

Classical vs. quantum learning of discrete distributions

Dominik Hangleiter

QSI Seminar, September 10, 2020

Licensed under CC BY-NC 4.0.

Ryan Sweke

Jean-Pierre Seifert

Jens Eisert

VS.

Machine learning

~	~	
8	2	
0.	9	

Machine learning and distribution learning

oracle

Supervised learning

Unsupervised learning

Reinforcement learning

learner

Image Refs.: Wikipedia - Hund, Katze, Van Gogh, Kaffeesatz (CC0), QC: Graham Carlow/IBM

Machine learning and distribution learning

Supervised learning

Unsupervised learning

Reinforcement learning

Unsupervised learning

Distribution on $\{images\} \times \{0, 1\}$.

Reinforcement learning

learner

9 / 36

Image Refs.: Wikipedia – Hund, Katze, Van Gogh, Kaffeesatz (CC0), QC: Graham Carlow/IBM

Unsupervised learning

Reinforcement learning

oracle

learner

Image Refs.: Wikipedia - Hund, Katze, Van Gogh, Kaffeesatz (CC0), QC: Graham Carlow/IBM

Unsupervised learning

Distribution on {images}

oracle

Reinforcement learning

Unsupervised learning

Reinforcement learning

learner

9 / 36

Image Refs.: Wikipedia – Hund, Katze, Van Gogh, Kaffeesatz (CC0), QC: Graham Carlow/IBM

oracle

Unsupervised learning

Distribution on moves, conditioned on environ. configs.

Reinforcement learning

learner

Image Refs.: Wikipedia – Hund, Katze, Van Gogh, Kaffeesatz (CC0), QC: Graham Carlow/IBM

Unsupervised learning

Reinforcement learning

oracle

learner

Image Refs.: Wikipedia - Hund, Katze, Van Gogh, Kaffeesatz (CC0), QC: Graham Carlow/IBM

Unsupervised learning

Reinforcement learning

oracle

quantum learner

 ${\sf Image \ Refs.: \ Wikipedia - Hund, \ Katze, \ Van \ Gogh, \ Kaffeesatz \ (CC0), \ QC: \ Graham \ Carlow/IBM}$

Task: Learn a generator GEN_D of a distribution D.

Classical vs. quantum generative modelling

Question: Quantum generator-learning advantage?

Are there distributions which are

- not efficiently classsically generator-learnable, but
- efficiently quantum generator-learnable?

Learning Boolean functions $f: \{0, 1\}^n \to \{0, 1\}$.

Learning Boolean functions $f : \{0, 1\}^n \to \{0, 1\}$.

Learning Boolean functions $f : \{0, 1\}^n \to \{0, 1\}$.

Learning Boolean functions $f : \{0, 1\}^n \to \{0, 1\}$.

Specify the question!

Classes of distributions

Sample space Ω_n . Think $\{0,1\}^n$.

Classes of distributions

Sample space Ω_n . Think $\{0,1\}^n$.

Distributions \mathcal{D}_n over Ω_n .

Classes of distributions

- Sample space Ω_n . Think $\{0,1\}^n$.
- Distributions \mathcal{D}_n over Ω_n .
- Distribution (concept) class $\mathcal{C}_n \subset \mathcal{D}_n$

Classes of distributions

- Sample space Ω_n . Think $\{0,1\}^n$.
- Distributions \mathcal{D}_n over Ω_n .
- Distribution (concept) class $\mathcal{C}_n \subset \mathcal{D}_n$

Efficiently generate problem instances!

Classical vs. quantum learning (1)

Question: Quantum generator-learning advantage?

Is there a distribution (concept) class which is

- not efficiently classsically generator-learnable, but
- efficiently quantum generator-learnable?

Generators

 GEN_D

Oracle access

 $\begin{array}{l} \mathsf{SAMPLE}(\mathsf{D}) \\ \mathsf{x} \leftarrow \mathsf{D} \end{array}$

QSAMPLE(D)

 $\sum_{x} \sqrt{D(x)} |x\rangle$

Excellent discussion: Bshouty and Jackson, SIAM J. Comput. (1998)

Learning algorithm

Excellent discussion: Bshouty and Jackson, SIAM J. Comput. (1998)

Excellent discussion: Bshouty and Jackson, SIAM J. Comput. (1998)

Excellent discussion: Bshouty and Jackson, SIAM J. Comput. (1998)

17 / 36

Classical vs. quantum learning (2)

Question: Quantum generator-learning advantage?

Is there a class of efficiently classically generated discrete distributions which is

- not efficiently classsical generator-learnable, but
- efficiently quantum generator-learnable

w.r.t. the SAMPLE oracle?

PAC learning of distribution classes A distribution class C is PAC learnable w.r.t. distance d, if there is an algorithm A which for every $D \in C$ and every $\epsilon, \delta > 0$, given access to an oracle O(D), outputs • with probability at least $1 - \delta$ (Probably) a generator GEN_{D'} of a distribution D' such that • $d(D, D') < \epsilon$. (Approximately Correct)

PAC learning of distribution classes

A distribution class C is PAC learnable w.r.t. distance d, if there is an algorithm A which for every $D \in C$ and every $\epsilon, \delta > 0$, given access to an oracle O(D), outputs

• with probability at least $1 - \delta$ (Probably)

a generator $\mathsf{GEN}_{D'}$ of a distribution D' such that

■ $d(D, D') < \epsilon$. (Approximately Correct)

PAC learning of distribution classes

A distribution class C is PAC learnable w.r.t. distance d, if there is an algorithm A which for every $D \in C$ and every $\epsilon, \delta > 0$, given access to an oracle O(D), outputs

• with probability at least $1 - \delta$ (Probably)

a generator $\mathsf{GEN}_{D'}$ of a distribution D' such that

■ $d(D, D') < \epsilon$. (Approximately Correct)

PAC learning of distribution classes

A distribution class C is efficiently PAC learnable w.r.t. distance d, if there is an algorithm A which for every $D \in C$ and every $\epsilon, \delta > 0$, given access to an oracle O(D), outputs in time $poly(|D|, 1/\epsilon, 1/\delta)$

• with probability at least $1 - \delta$ (Probably)

a generator $\operatorname{GEN}_{D'}$ of a distribution D' such that

■ $d(D, D') < \epsilon$. (Approximately Correct)

PAC learning of distribution classes

A distribution class C is efficiently PAC learnable w.r.t. distance d, if there is an algorithm A which for every $D \in C$ and every $\epsilon, \delta > 0$, given access to an oracle O(D), outputs in time $poly(|D|, 1/\epsilon, 1/\delta)$

• with probability at least $1 - \delta$ (Probably)

a generator $\mathsf{GEN}_{D'}$ of a distribution D' such that

• $d(D, D') < \epsilon$. (Approximately Correct)

Distance measures: KL divergence

$$d_{\mathsf{KL}}(D, D') = \sum_{x} D(x) \log\left(\frac{D(x)}{D'(x)}\right)$$

Finally ...

A quantum vs. classical separation for distribution learning

Question: Quantum generator-learning advantage?

Is there a class of efficiently classically generated discrete distributions which is

- not efficiently classsical PAC generator-learnable, but
- efficiently quantum PAC generator-learnable

w.r.t. the SAMPLE oracle and the KL divergence?

Coyle et al., NPJ Quant. Inf. (2020).

Question: Quantum generator-learning advantage?

Is there a class of efficiently classically generated discrete distributions which is

- not efficiently classsical PAC generator-learnable, but
- efficiently quantum PAC generator-learnable

w.r.t. the SAMPLE oracle and the KL divergence?

Theorem: $\mathbf{Y} \mathbf{E} \mathbf{S}^* \mathbf{I}$

*under the decisional Diffie-Hellman assumption for the group family of quadratic residues Proof sketch

Proof sketch

Classical hardness
Quantum easiness

Distributions that are hard to learn classically (1)

Pseudorandom function (PRF)

Distributions that are hard to learn classically (1)

Pseudorandom function (PRF)

22 / 36

Distributions that are hard to learn classically (1)

Pseudorandom function (PRF)

22 / 36

Distributions that are hard to learn classically (1)

Pseudorandom function (PRF)

Distributions that are hard to learn classically (1)

Pseudorandom function (PRF)

$$\Pr_{\substack{k \leftarrow U(\mathcal{K}) \\ \text{problem size}}} \left[\mathcal{A}^{O(F_k)} = 1 \right] \quad - \quad \Pr_{\substack{F \leftarrow U(\mathcal{F}) \\ \text{problem size}}} \left[\mathcal{A}^{O(F)} = 1 \right] \quad < \mathsf{negl.?}$$

Distributions that are hard to learn classically (1)

Pseudorandom function (PRF)

$$\Pr_{\substack{k \leftarrow U(\mathcal{K}) \\ \text{problem size}}} \left[\mathcal{A}^{O(F_k)} = 1 \right] \quad - \quad \Pr_{\substack{F \leftarrow U(\mathcal{F}) \\ \text{problem size}}} \left[\mathcal{A}^{O(F)} = 1 \right] \right| < \mathsf{negl.?}$$

Distributions that are hard to learn classically (2)

Theorem (Kearns et al., '94)

Given a classical-secure PRF $\{F_k\}_k$, the distribution class $\{D_k\}_k$ defined by the "Kearns generator"

 $KGEN_k(x) = x ||F_k(x)|$

cannot be efficiently classically generator-learned.

Proof idea

If such a learning algorithm $\tilde{\mathcal{A}}$ exists, then we can use this algorithm to construct an efficient adversary \mathcal{A} for the PRF!

Kearns et al.: On the learnability of discrete distributions STOC (1995).

What is a pseudorandom generator?

An efficiently computable function $G: D \to D'$ is called a pseudorandom generator if $G(x), x \leftarrow \mathcal{U}(D)$ cannot be efficiently distinguished from a uniformly random $y \leftarrow \mathcal{U}(D')$

What is a pseudorandom generator?

An efficiently computable function $G: D \to D'$ is called a pseudorandom generator if $G(x), x \leftarrow \mathcal{U}(D)$ cannot be efficiently distinguished from a uniformly random $y \leftarrow \mathcal{U}(D')$

Input: length-doubling PRG:

$$\begin{split} G: D &\to D \times D \\ x &\mapsto G(x) \eqqcolon G^0(x) || G^1(x). \end{split}$$

Goal: Construct a PRF

 $F: D \times \{0,1\}^n \to D,$

such that for $k \in \mathcal{K} \equiv D$, F_k looks random.

Goldreich, Goldwasser, Micali: How to construct random functions. J. ACM (1986).

Input: length-doubling PRG:

 $\begin{aligned} G: D \to D \times D \\ x \mapsto G(x) =: G^0(x) ||G^1(x). \end{aligned}$

Goal: Construct a PRF

 $F: D \times \{0, 1\}^n \to D,$

such that for $k \in \mathcal{K} \equiv D$, F_k looks random.

Goldreich, Goldwasser, Micali: How to construct random functions. J. ACM (1986).

Constructing PRFs from PRGs: The GGM construction

Constructing PRFs from PRGs: The GGM construction

Constructing PRGs from one-way-functions: Discrete logarithm and DDH

Modular Exponentiation: p prime, g generator of \mathbb{Z}_n^*

 $\mathsf{modexp}_{g,p}: \mathbb{N} \to \mathbb{Z}_p$ $x \mapsto g^x \bmod p$

Discrete logarithm Given $y = g^x \mod p$ $dlog_{g,p}(y) = x$

Constructing PRGs from one-way-functions: Discrete logarithm and DDH

Constructing PRGs from one-way-functions: Discrete logarithm and DDH

The DDH assumption is not believed to hold for all \mathbb{Z}_p^* .

The DDH assumption is not believed to hold for all \mathbb{Z}_p^* .

e.g., if $p-1\ \mathrm{has}\ \mathrm{small}\ \mathrm{prime}\ \mathrm{factors}\ \mathrm{DDH}\ \mathrm{is}\ \mathrm{false}.$

Quadratic residues for safe primes p = 2q + 1, q, p prime. $QR_p = \{y \in \mathbb{Z}_p^* : \exists x \in \mathbb{Z}_p^* \text{ s.t. } x^2 = y \mod p\} \simeq \mathbb{Z}_q$

Blum, Micali: FOCS '82.

The DDH assumption is not believed to hold for all \mathbb{Z}_p^* .

The DDH assumption is not believed to hold for all \mathbb{Z}_p^* .

The DDH assumption is not believed to hold for all \mathbb{Z}_p^* .

The DDH assumption is not believed to hold for all \mathbb{Z}_p^* .

e.g., if $p-1\ \mathrm{has}\ \mathrm{small}\ \mathrm{prime}\ \mathrm{factors}\ \mathrm{DDH}\ \mathrm{is}\ \mathrm{false}.$

Blum, Micali: FOCS '82.

The DDH assumption is not believed to hold for all \mathbb{Z}_p^* .

Efficient bijection $QR_p \leftrightarrow \mathbb{Z}_q^*$

$$f_p : \mathrm{QR}_p \to \mathbb{Z}_q^*$$
$$x \mapsto f_p(x) \coloneqq \begin{cases} x & x \le q \\ p - x & x > q \end{cases}$$

1

2

1 Make the DDH assumption for the group family of quadratic residues

 $\mathrm{modexp}_{p,g}(x) = g^x \ \mathrm{mod} \ p.$

2 Define the pseudorandom generator

$$\begin{aligned} G_{(p,g,g^a)} &: \mathbb{Z}_q \to \mathbb{Z}_q \times \mathbb{Z}_q \text{ with } a \in \mathbb{Z}_q \\ b \mapsto f_p(g^b \mod p) || f_p(g^{ab} \mod p) \equiv G^0_{(p,g,g^a)}(b) || G^1_{(p,g,g^a)}(b). \end{aligned}$$

3 Define the pseudorandom function

$$F_{(p,g,g^a),b}: \mathbb{Z}_q \times \{0,1\}^n \to \mathbb{Z}_q \text{ with } b \leftarrow \mathcal{U}(\mathbb{Z}_q)$$

via the GGM construction using $G^0_{(p,g,g^a)}, G^1_{(p,g,g^a)}$

4 Define the distribution class $\{D_{(p,g,g^a),b}\}_b$ on $\{0,1\}^{2n+m}$ via the (modified) Kearns generator

$$\mathsf{GEN}(x) = x ||\mathsf{BIN}_n(F_{(p,g,g^a),b}(x))||\mathsf{BIN}_m(p,g,g^a) \text{ with } x \leftarrow \mathcal{U}(\{0,1\}^n).$$

1 Make the DDH assumption for the group family of quadratic residues

 $\mathsf{modexp}_{p,g}(x) = g^x \bmod p.$

2 Define the pseudorandom generator

$$\begin{aligned} G_{(p,g,g^a)} &: \mathbb{Z}_q \to \mathbb{Z}_q \times \mathbb{Z}_q \text{ with } a \in \mathbb{Z}_q \\ b \mapsto f_p(g^b \mod p) || f_p(g^{ab} \mod p) \equiv G^0_{(p,g,g^a)}(b) || G^1_{(p,g,g^a)}(b). \end{aligned}$$

3 Define the pseudorandom function

$$F_{(p,g,g^a),b}: \mathbb{Z}_q \times \{0,1\}^n \to \mathbb{Z}_q \text{ with } b \leftarrow \mathcal{U}(\mathbb{Z}_q)$$

via the GGM construction using $G^0_{(p,g,g^a)}, G^1_{(p,g,g^a)}$.

I Define the distribution class $\{D_{(p,g,g^a),b}\}_b$ on $\{0,1\}^{2n+m}$ via the (modified) Kearns generator

$$\mathsf{GEN}(x) = x ||\mathsf{BIN}_n(F_{(p,g,g^a),b}(x))||\mathsf{BIN}_m(p,g,g^a) \text{ with } x \leftarrow \mathcal{U}(\{0,1\}^n).$$

1 Make the DDH assumption for the group family of quadratic residues

 $\mathsf{modexp}_{p,g}(x) = g^x \bmod p.$

2 Define the pseudorandom generator

$$\begin{aligned} G_{(p,g,g^a)} &: \mathbb{Z}_q \to \mathbb{Z}_q \times \mathbb{Z}_q \text{ with } a \in \mathbb{Z}_q \\ b \mapsto f_p(g^b \mod p) || f_p(g^{ab} \mod p) \equiv G^0_{(p,g,g^a)}(b) || G^1_{(p,g,g^a)}(b). \end{aligned}$$

3 Define the pseudorandom function

$$F_{(p,g,g^a),b}: \mathbb{Z}_q \times \{0,1\}^n \to \mathbb{Z}_q \text{ with } b \leftarrow \mathcal{U}(\mathbb{Z}_q)$$

via the GGM construction using $G^0_{(p,g,g^a)}, G^1_{(p,g,g^a)}$.

4 Define the distribution class $\{D_{(p,g,g^a),b}\}_b$ on $\{0,1\}^{2n+m}$ via the (modified) Kearns generator

 $\mathsf{GEN}(x) = x ||\mathsf{BIN}_n(F_{(p,g,g^a),b}(x))||\mathsf{BIN}_m(p,g,g^a) \text{ with } x \leftarrow \mathcal{U}(\{0,1\}^n).$

1 Make the DDH assumption for the group family of quadratic residues

 $\operatorname{modexp}_{p,g}(x) = g^x \mod p.$

2 Define the pseudorandom generator

$$\begin{aligned} G_{(p,g,g^a)} &: \mathbb{Z}_q \to \mathbb{Z}_q \times \mathbb{Z}_q \text{ with } a \in \mathbb{Z}_q \\ b \mapsto f_p(g^b \mod p) || f_p(g^{ab} \mod p) \equiv G^0_{(p,g,g^a)}(b) || G^1_{(p,g,g^a)}(b). \end{aligned}$$

3 Define the pseudorandom function

$$F_{(p,g,g^a),b}: \mathbb{Z}_q \times \{0,1\}^n \to \mathbb{Z}_q \text{ with } b \leftarrow \mathcal{U}(\mathbb{Z}_q)$$

via the GGM construction using $G^0_{(p,g,g^a)}, G^1_{(p,g,g^a)}.$

4 Define the distribution class $\{D_{(p,g,g^a),b}\}_b$ on $\{0,1\}^{2n+m}$ via the (modified) Kearns generator

$$\mathsf{GEN}(x) = x ||\mathsf{BIN}_n(F_{(p,g,g^a),b}(x))||\mathsf{BIN}_m(p,g,g^a) \text{ with } x \leftarrow \mathcal{U}(\{0,1\}^n).$$

Cracking hard-to-learn distribution classes with a quantum computer

Cracking hard-to-learn distribution classes with a quantum computer

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003)

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003)

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003)

Figure Ref: The internet.

A quantum vs. classical separation for distribution learning

Question: Quantum generator-learning advantage?

Is there a class of efficiently classically generated discrete distributions which is

- not efficiently classsical PAC generator-learnable, but
- efficiently quantum PAC generator-learnable

w.r.t. the SAMPLE oracle and the KL divergence?

Theorem: $\mathbf{Y} \mathbf{E} \mathbf{S}^* \mathbf{I}$

*under the decisional Diffie-Hellman assumption for the group family of quadratic residues

Coyle et al., NPJ Quant. Inf. (2020).

Wrap up

PROs

 Our result shows that discrete distributions admit structure that can be exploited by quantum computers.

CONs

- The result is not a practical result and (a bit) artificial.
 - a single sample always suffices for learning.
 - the learning algorithm is always exact.

OUTlook

- Really, we would like to show a quantum advantage for a relevant problem, for example, learning 'mixtures of Gaussians'.
- Weaken the crypto assumptions e.g., are weak PRFs sufficient for hardness?

PROs

 Our result shows that discrete distributions admit structure that can be exploited by quantum computers.

CONs

- The result is not a practical result and (a bit) artificial.
 - a single sample always suffices for learning.
 - the learning algorithm is always exact.

OUTlook

- Really, we would like to show a quantum advantage for a relevant problem, for example, learning 'mixtures of Gaussians'.
- Weaken the crypto assumptions e.g., are weak PRFs sufficient for hardness?

Discussion

PROs

 Our result shows that discrete distributions admit structure that can be exploited by quantum computers.

CONs

- The result is not a practical result and (a bit) artificial.
 - a single sample always suffices for learning.
 - the learning algorithm is always exact.

OUTlook

- Really, we would like to show a quantum advantage for a relevant problem, for example, learning 'mixtures of Gaussians'.
- Weaken the crypto assumptions e.g., are weak PRFs sufficient for hardness?

THANK

YOU