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Machine learning



Dominik Hangleiter: Classical vs. quantum learning | Motivation 6 / 36

Image Ref.: Wikipedia – Katze (CC0)



Dominik Hangleiter: Classical vs. quantum learning | Motivation 7 / 36

Image Ref.: Wikipedia – Vincent Van Gogh (CC0)
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Unsupervised learning: generator vs. density learning
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Unsupervised learning: generator vs. density learning

GEND
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Ω
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Ω
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D

Density learning

GEND

Generator learning

x← U

GEND(x)

Task: Learn a generator GEND of a distribution D.
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Classical vs. quantum generative modelling

Question: Quantum generator-learning advantage?
Are there distributions which are

not efficiently classsically generator-learnable, but
efficiently quantum generator-learnable?
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The details matter – the case of function learning

Learning Boolean functions f : {0, 1}n → {0, 1}.
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Specify the question!
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Classes of distributions

Sample space Ωn. Think {0, 1}n.

Distributions Dn over Ωn.

Distribution (concept) class Cn ⊂ Dn
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D5

C5

Efficiently generate problem instances!

IG(1n)→ D ∈ Cn
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Classical vs. quantum learning (1)

Question: Quantum generator-learning advantage?
Is there a distribution (concept) class which is

not efficiently classsically generator-learnable, but
efficiently quantum generator-learnable?



Dominik Hangleiter: Classical vs. quantum learning | Basics of learning theory 16 / 36

Generator-learning: classical vs. quantum
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x ← D

GEND

Generators Oracle access Learning algorithm

QGEND

GEND

Excellent discussion: Bshouty and Jackson, SIAM J. Comput. (1998) Figure Refs. Dice, coffee grounds: Wikipedia (CC0), QC: Graham Carlow/IBM
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Classical vs. quantum learning (2)

Question: Quantum generator-learning advantage?
Is there a class of efficiently classically generated discrete distributions
which is

not efficiently classsical generator-learnable, but
efficiently quantum generator-learnable

w.r.t. the SAMPLE oracle?
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PAC generator-learning distribution classes

PAC learning of distribution classes
A distribution class C is PAC learnable w.r.t. distance d, if there is an
algorithm A which for every D ∈ C and every ε, δ > 0, given access
to an oracle O(D), outputs

with probability at least 1− δ (Probably)
a generator GEND′ of a distribution D′ such that

d(D,D′) < ε. (Approximately Correct)

Distance measures: KL divergence

dKL(D,D′) =
∑
x

D(x) log

(
D(x)

D′(x)

)
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Finally ...
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A quantum vs. classical separation for distribution learning

Question: Quantum generator-learning advantage?
Is there a class of efficiently classically generated discrete distributions
which is

not efficiently classsical PAC generator-learnable, but
efficiently quantum PAC generator-learnable

w.r.t. the SAMPLE oracle and the KL divergence?

Coyle et al., NPJ Quant. Inf. (2020).
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A quantum vs. classical separation for distribution learning

Question: Quantum generator-learning advantage?
Is there a class of efficiently classically generated discrete distributions
which is

not efficiently classsical PAC generator-learnable, but
efficiently quantum PAC generator-learnable

w.r.t. the SAMPLE oracle and the KL divergence?

Theorem: Y E S∗ !
∗under the decisional Diffie-Hellman assump-
tion for the group family of quadratic residues

Coyle et al., NPJ Quant. Inf. (2020).
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Distributions that are hard to learn classically (1)

Pseudorandom function (PRF)
A collection of keyed functions {Fk : D → D′}k∈K that cannot be distinguished from
uniformly random functions in {F : D → D′} by any polynomial-time algorithm A.

Fk F;

A

{Fk : D → D′}k∈K {F : D → D′}

1

U U

Oracles & Security
Classical algorithms A
random weak-secure
membership classical-secure

Quantum algorithms A
random standard-secure
qu. memb. quantum-secure
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Distributions that are hard to learn classically (2)

Theorem (Kearns et al., ’94)
Given a classical-secure PRF {Fk}k, the distribution class {Dk}k defined by the “Kearns
generator”

KGENk(x) = x||Fk(x)

cannot be efficiently classically generator-learned.

Proof idea
If such a learning algorithm Ã exists,
then we can use this algorithm to construct an
efficient adversary A for the PRF!

Fk

Kearns et al.: On the learnability of discrete distributions STOC (1995).
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Digging deeper: How to construct PRFs

∃ pseudorandom generator

∃ one-way function

∃ pseudorandom function

∃ hard-to-learn
distribution class
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Constructing PRFs from PRGs

What is a pseudorandom generator?
An efficiently computable function G : D → D′ is called a pseudorandom generator if
G(x), x← U(D) cannot be efficiently distinguished from a uniformly random y ← U(D′)

;

A

D

D′ D′

∣∣∣∣Pr x←U(D)
problem size

[A(G(x)) = 1] Pr y←U(D′)
problem size

[A(y) = 1]

∣∣∣∣− < negl.?

G

U
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Constructing PRFs from PRGs

Input: length-doubling PRG:

G : D → D ×D

x 7→ G(x) =: G0(x)||G1(x).

Goal: Construct a PRF

F : D × {0, 1}n → D,

such that for k ∈ K ≡ D, Fk looks random.

Fk

G
U

Goldreich, Goldwasser, Micali: How to construct random functions. J. ACM (1986).
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Constructing PRFs from PRGs: The GGM construction

k

b1 = G 0(k)

b2 = G 0(b1)

bn = G 0(bn−1)

= Fk(0, 0, . . . , 0)

xn = 0 1

x3 = 0

0 1

1

x2 = 0

b2 = G 1(b1)

bn = G 1(bn−1)

= Fk(x1|| . . . ||xn)

1

x1 = 0

b1 = G 1(k)

b2 = G 0(b1) b2 = G 1(k)

1

G xn

G x3

G x2

G x1

Input: G = G 0||G 1, key k ∈ K, input string x = x1|| . . . ||xn
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Constructing PRGs from one-way-functions: Discrete logarithm and DDH

Modular Exponentiation: p prime, g generator of Z∗
p

modexpg,p : N→ Zp

x 7→ gx mod p

Discrete logarithm
Given y = gx mod p

dlogg,p(y) = x
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The DDH assumption for quadratic residues

The DDH assumption is not believed to hold for all Z∗
p.

e.g., if p− 1 has small prime factors DDH is false.

Quadratic residues for safe primes
p = 2q + 1, q, p prime.

QRp = {y ∈ Z∗
p : ∃x ∈ Z∗

p s.t. x2 = y mod p} ' Zq

Efficient bijection QRp ↔ Z∗
q

fp : QRp → Z∗
q

x 7→ fp(x) :=

{
x x ≤ q

p− x x > q

Example: p = 7 = 2 · 3 + 1

0 1 2 3 4 5 6 7 8 9

1 2 4 QR7

e.g. 32 mod 7 = 2

Important properties
1 believed to satisfy the DDH property (Boneh ’98)
2 A problem instance can be efficiently generated.

membership in QRp can be checked efficiently.
safe primes of a given length can be efficiently
generated.
almost all elements are generators.

Blum, Micali: FOCS ’82. Boneh: The decisional Diffie-Hellman problem. ’98
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Important properties
1 believed to satisfy the DDH property (Boneh ’98)
2 A problem instance can be efficiently generated.

membership in QRp can be checked efficiently.
safe primes of a given length can be efficiently
generated.
almost all elements are generators.

A pseudorandom generator from QRp

G̃(p,g,ga) : Zq → QRp ×QRp

b 7→ gb mod p||gab mod p

= G0
(p,g,ga)(b)||G

1
(p,g,ga)(b)

G(p,g,ga) = fp ◦ G̃(p,g,ga) : Zq → Zq × Zq

Blum, Micali: FOCS ’82. Boneh: The decisional Diffie-Hellman problem. ’98
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The full construction

1 Make the DDH assumption for the group family of quadratic residues

modexpp,g(x) = gx mod p.

2 Define the pseudorandom generator

G(p,g,ga) : Zq → Zq × Zq with a ∈ Zq

b 7→ fp(g
b mod p)||fp(gab mod p) ≡ G0

(p,g,ga)(b)||G
1
(p,g,ga)(b).

3 Define the pseudorandom function

F(p,g,ga),b : Zq × {0, 1}n → Zq with b← U(Zq)

via the GGM construction using G0
(p,g,ga), G

1
(p,g,ga).

4 Define the distribution class {D(p,g,ga),b}b on {0, 1}2n+m via the (modified) Kearns
generator

GEN(x) = x||BINn(F(p,g,ga),b(x))||BINm(p, g, ga) with x← U({0, 1}n).
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Cracking hard-to-learn distribution classes with a quantum computer

∃ pseudorandom generator

∃ one-way function

∃ pseudorandom function

∃ hard-to-learn
distribution class
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Cracking hard-to-learn distribution classes with a quantum computer

∃ pseudorandom generator

∃ one-way function

∃ pseudorandom function

∃ hard-to-learn
distribution class

quantum adversary

quantum adversary

quantum adversary

quantum adversary
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Cracking the GGM tree

k

b1 = G 0(k)

b2 = G 0(b1)

bn = G 0(bn−1)

= Fk(0, 0, . . . , 0)

xn = 0 1

x3 = 0

0 1

1

x2 = 0

b2 = G 1(b1)

bn = G 1(bn−1)

= Fk(x1|| . . . ||xn)

1

x1 = 0

b1 = G 1(k)

b2 = G 0(b1) b2 = G 1(b1)

1

G xn

G x3

G x2

G x1

Input: G = G 0||G 1, key k ∈ K, input string x = x1|| . . . ||xn

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003)
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Cracking the GGM tree

b

b1 = fp(modexpp,g (b))

b2 = G 0(b1)

0 1

x3 = 0

0 1

1

x2 = 0

b2 = fp(modexpp,ga(b1))

Output: bn = F(p,g ,ga),b)(x1|| · · · xn)

1

x1 = 0

b1 = G 1(b)

b2 = G 0(b1) b2 = G 1(b1)

1

modexpp,gxna

modexpp,gx3a

modexpp,gx2a

modexpp,gx1a

Input: (p, g , ga), key b ∈ Z∗
q

fp

fp

fp

fp

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003)
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x||BINn(F(p,g,ga),b(x))||BINm(p, g, ga)

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003)
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Cracking the GGM tree

b = dlogp,g (f
−1
p (b1))

b1 = dlogp,ga(f −1
p (b3))

b2 = G 0(b1)

0 1

x3 = 0

0 1

1

x2 = 0

b2 = dlogp,ga(f −1
p (b3))

Input: bn = BINn(F(p,g ,ga),b)(x1|| · · · xn)

1

x1 = 0

b1 = G 1(b)

b2 = G 0(b1) b2 = G 1(b1)

1

dlogp,gxna

dlogp,gx3a

dlogp,gx2a

dlogp,gx1a

Output: key b ∈ Z∗
p

f −1
p

f −1
p

f −1
p

f −1
p

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003)
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Input: bn = BINn(F(p,g ,ga),b)(x1|| · · · xn)

1

x1 = 0

b1 = G 1(b)

b2 = G 0(b1) b2 = G 1(b1)

1

dlogp,gxna

dlogp,gx3a

dlogp,gx2a

dlogp,gx1a

Output: key b ∈ Z∗
p

f −1
p

f −1
p

f −1
p

f −1
p Quantum algorithm for dlogp,g is exact! (Mosca, Zalka ’03)

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003)
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Cracking the GGM tree

b = dlogp,g (f
−1
p (b1))

b1 = dlogp,ga(f −1
p (b3))

b2 = G 0(b1)

0 1

x3 = 0

0 1

1

x2 = 0

b2 = dlogp,ga(f −1
p (b3))

Input: bn = BINn(F(p,g ,ga),b)(x1|| · · · xn)

1

x1 = 0

b1 = G 1(b)

b2 = G 0(b1) b2 = G 1(b1)

1

dlogp,gxna

dlogp,gx3a

dlogp,gx2a

dlogp,gx1a

Output: key b ∈ Z∗
p

f −1
p

f −1
p

f −1
p

f −1
p Quantum algorithm for dlogp,g is exact! (Mosca, Zalka ’03)

The distribution D(p,g,ga),b can be exactly
PAC generator-learned from a single sample!

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003) Figure Ref: The internet.
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A quantum vs. classical separation for distribution learning

Question: Quantum generator-learning advantage?
Is there a class of efficiently classically generated discrete distributions
which is

not efficiently classsical PAC generator-learnable, but
efficiently quantum PAC generator-learnable

w.r.t. the SAMPLE oracle and the KL divergence?

Theorem: Y E S∗ !
∗under the decisional Diffie-Hellman assump-
tion for the group family of quadratic residues

Coyle et al., NPJ Quant. Inf. (2020).
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Wrap up
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Discussion

PROs
Our result shows that discrete distributions admit structure that can
be exploited by quantum computers.

CONs
The result is not a practical result and (a bit) artificial.

a single sample always suffices for learning.
the learning algorithm is always exact.

OUTlook
Really, we would like to show a quantum advantage for a relevant
problem, for example, learning ‘mixtures of Gaussians’.
Weaken the crypto assumptions – e.g., are weak PRFs sufficient for
hardness?
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