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Task: Learn a generator GENp of a distribution D.
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Classical vs. quantum generative modelling

36

Question: Quantum generator-learning advantage?
Are there distributions which are
m not efficiently classsically generator-learnable, but

m efficiently quantum generator-learnable?
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The details matter — the case of function learning

Learning Boolean functions f : {0,1}" — {0, 1}.

Arunachalam and de Wolf: A survey of quantum learning theory. SIGACT news (2017).
Arunachalam and de Wolf: Optimal quantum sample complexity of learning algorithms. CCC'17.
Bshouty and Jackson: Learning DNF over the uniform distribution using a quantum example oracle. SIAM J. Comp (1999).
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Classical vs. quantum learning (1)
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Question: Quantum generator-learning advantage?
Is there a distribution (concept) class which is
m not efficiently classsically generator-learnable, but

m efficiently quantum generator-learnable?
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Classical vs. quantum learning (2)
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Question: Quantum generator-learning advantage?
Is there a class of efficiently classically generated discrete distributions
which is
m not efficiently classsical generator-learnable, but
m efficiently quantum generator-learnable
w.r.t. the SAMPLE oracle?
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PAC generator-learning distribution classes

PAC learning of distribution classes
A distribution class C is PAC learnable w.r.t. distance d, if there is an
algorithm A which for every D € C and every ¢, > 0, given access
to an oracle O(D), outputs

m with probability at least 1 — & (Probably)
a generator GEN . of a distribution D’ such that

m d(D,D') < e. (Approximately Correct)
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PAC learning of distribution classes

A distribution class C is efficiently PAC learnable w.r.t. distance d, if
there is an algorithm A which for every D € C and every ¢,d > 0,
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PAC learning of distribution classes

A distribution class C is efficiently PAC learnable w.r.t. distance d, if
there is an algorithm A which for every D € C and every ¢,6 > 0,
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rQuestion: Quantum generator-learning advantage?
Is there a class of efficiently classically generated discrete distributions
which is
m not efficiently classsical PAC generator-learnable, but
m efficiently quantum PAC generator-learnable
w.r.t. the SAMPLE oracle and the KL divergence?

Coyle et al., NPJ Quant. Inf. (2020).
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A quantum vs. classical separation for distribution learning

Question: Quantum generator-learning advantage?
Is there a class of efficiently classically generated discrete distributions
which is
m not efficiently classsical PAC generator-learnable, but
m efficiently quantum PAC generator-learnable
w.r.t. the SAMPLE oracle and the KL divergence?

Theorem: Y ES !

Coyle et al., NPJ Quant. Inf. (2020).
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Proof sketch

1. Classical hardness
2. Quantum easiness



Distributions that are hard to learn classically (1)

Pseudorandom function (PRF)
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Distributions that are hard to learn classically (1)

Pseudorandom function (PRF)

A collection of keyed functions {F} : D — D'}k that cannot be distinguished from
uniformly random functions in {F' : D — D'} by any polynomial-time algorithm A.

Pr k<U(K) [.AO(F"”') = 1] — Pr F«U(F) [.AO(]) = 1] < negl.?

problem size problem size
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Distributions that are hard to learn classically (2)

 Theorem ( )

generator”

KGEN(z) = || Fi(x)

Given a classical-secure PRF { Fy}, the distribution class { Dy} defined by the “Kearns

cannot be efficiently classically generator-learned.

Kearns et al.: On the learnability of discrete distributions STOC (1995).

Proof idea

If such a learning algorithm A exists,
then we can use this algorithm to construct an
efficient adversary A for the PRF!
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Digging deeper: How to construct PRFs
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Constructing PRFs from PRGs

What is a pseudorandom generator?

An efficiently computable function G : D — D’ is called a pseudorandom generator if
G(z),x + U(D) cannot be efficiently distinguished from a uniformly random y «+ U(D’)
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Constructing PRFs from PRGs

Input: length-doubling PRG: Goal: Construct a PRF

G:D—DxD F:Dx{0,1}" = D,

_. 0 1
= G(z) = G(2)]|G(2). such that for k € K = D, F}, looks random.

Goldreich, Goldwasser, Micali: How to construct random functions. J. ACM (1986).
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Constructing PRFs from PRGs: The GGM construction
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Constructing PRGs from one-way-functions: Discrete logarithm and DDH

Modular Exponentiation: p prime, g generator of Z;

modexp, , : N = Z,

z+— ¢g* mod p

Discrete logarithm

Given y = ¢® mod p

dlog,,(y) = =




Constructing PRGs from one-way-functions: Discrete logarithm and DDH

Modular Exponentiation: p prime, g generator of Z; Discrete logarithm

Gi = g* mod
modexp, , : N = Z, Veny =g modp

z+ g° mod p dlog, ,(y) = =

’Pl‘a,w—u(zp) [A(g. 9", 9", 9") = 1] = Propccuz) AW 0" 0" 0°) = 1]| < negl.?
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Modular Exponentiation: p prime, g generator of Z; Discrete logarithm

Gi = g* mod
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The DDH assumption is not believed to hold for all Z.
e.g., if p — 1 has small prime factors DDH is false.

Blum, Micali: FOCS '82. Boneh: The decisional Diffie-Hellman problem. '98
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The DDH assumption for quadratic residues

The DDH assumption is not believed to hold for all Z.
e.g., if p — 1 has small prime factors DDH is false.

Quadratic residues for safe primes Example: p=7=2-3+1
p=2q+1,¢pprime. |
\Iri 1 1 1 EI 1 1 R R I 72 >
QR,={y€Z,:3x€Z;st. 2> =y mod p} ~ Z, 00123456789
Z3
Efficient bijection QR, <+ Z}
fp : QRp — Z; >
1 2 4
)z < q
$'—>fp(x)—{p_$ z>q e.g.32mod7:2

Blum, Micali: FOCS '82. Boneh: The decisional Diffie-Hellman problem. '98
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Important properties
believed to satisfy the DDH property

m safe primes of a given length can be efficiently

generated.
m almost all elements are generators.

A problem instance can be efficiently generated.

m membership in QR can be checked efficiently.

Efficient bijection QR, <> Z}
fr: QR, — ZZ
z = fplx) = {

x r<q
p—x xT>q

Example: p=7=2-3+1

\Ir:l 1 IEI 1 1 R 12 \|/>
0:1 2 3i4 5 6:7 89
z;
1 2 4 >

e.g. 32 mod 7 =2

Blum, Micali: FOCS '82. Boneh: The decisional Diffie-Hellman problem. '98
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Important properties
believed to satisfy the DDH property

m safe primes of a given length can be efficiently
generated.
m almost all elements are generators.

A problem instance can be efficiently generated.

m membership in QR can be checked efficiently.

A pseudorandom generator from QR,,

Gipggn) - Zg — QR, x QR,,
b — ¢° mod p||g® mod p
)
- G(p,g,ga)( )HG(pgg (b)
Gp.ggr) = Jp © Gpgge) : Zqg = Zq X Zq

Example: p=7=2-3+1

0:1 2 3i4 5 6:7 89

eg 32mod 7 =2

Blum, Micali: FOCS '82.

Boneh: The decisional Diffie-Hellman problem. '98
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The full construction

Make the DDH assumption for the group family of quadratic residues
modexp,, ;(z) = g* mod p.
Define the pseudorandom generator
Gp,g.go) * Lg = Zqg X Zg with a € Z,
b fy(g” mod p)l| f(g" mod p) =GP, | o) ()G, g gy (D)

Define the pseudorandom function

Flpggnb : Zq X {0,1}" = Zg with b« U(Z,)

0 1

via the GGM construction using G(py’ga), G(M’ga).



The full construction

Make the DDH assumption for the group family of quadratic residues
modexp,, ;(z) = g* mod p.
Define the pseudorandom generator
Gp,g.go) * Lg = Zqg X Zg with a € Z,
b fp(g" mod p)||f,(9” mod p) = G, o oy (DIG{,, 4 o ().

Define the pseudorandom function

Flpggnb : Zq X {0,1}" = Zg with b« U(Z,)

0 1
(p9,9) G(ng,g“) :

B Define the distribution class {D, ; ga)}5 on {0, 1}?"F™ via the (modified) Kearns
generator

via the GGM construction using G

GEN(z) = o|[BIN, (F{p,g,94),6(7))[[BINm(p, g, g%) with z < U({0,1}").
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Cracking hard-to-learn distribution classes with a quantum computer
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Cracking hard-to-learn distribution classes with a quantum computer

3 one-way function
q

quantum adversary

¥ ¥

d pseudorandom generator

quantum adversary
Y ¥

3 pseudorandom function

quantum adversary
b i

3 hard-to-learn
distribution class




Cracking the GGM tree

Input: G = G°||G!, key k € K, input string x = x| ... ||xn
G* x1 =0 1
by = GO(k) by = G1(k)
G =0 ] N\
— GO(by) by = G(by) by = GO(by) by = G(by)

< X“B/\ LN LN SN
*"Hj\l 0/\ /\ /& /\ AN A

b—GO b—G
—Fk(OO 0) ka(XlH HX)




Cracking the GGM tree

Input: (p,g,87%), key b € Zj

modexp), gxa . =0 1
fo

by = f,(modexp,, (b)) by = GY(b)
modexp,, 2 Xy = / \1( / \
f,
" GO bl) by = (mOdeprg (bl)) by, = GO bl) by, = Gl bl)

modexp,, ox;2 ><3_(\)/ \1 / \, \/ \1 \/ \/

fo

N N NN D

Output by = Fp.g.g4),p) (X1l - )




Cracking the GGM tree

Input: (p,g,g?), key b € Z Sample
|[BIN (Fp,g,g),6(x))[BINm (p, g, 9%)

modex x12 ~
pp7g 1 X]. — 0 1
f

by = fp(modexpp_g(b)) by = Gl(b)
modexp,, ox2 Xy = 0/ \1‘ / \
i
: GO bl) by = (mOdeprg (bl)) by, = GO bl) by, = Gl bl)

modexp,, ox;2 ><3_(\)/ \1 / \, \/ \1 \/ \/

fo

N N LN

Output bn = Fp.g.g4),p)(x1l] - - )




Cracking the GGM tree

Output: key b € Z

dlog, gs [b — dlog, ,(f, (b))

P

bl - dlogp,ga(fp_l(b?’))

dlogp’g@a Xy = 0/( ,\1

f-fl

dlogf’gm _V ’\1 /‘ ’\

fy

e N TV
f71

= X1 :/r 1\1

P by = Go(bl) by, = C”ng ga(fp 1(b3)) b, = Go(bl)

p
| Input: by = BIN(F(p g ¢).5)(

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003)



Cracking the GGM tree

Output: key b € Z

dlog, gs (b = diog,, (£, (1))

f—l

P

b1 = d|0gp7ga(fp_1(b3))

dlogp’g@a X = 0/( ,\1

f'fl

’ by = GO(by) b = dlog, ;+(f;(h3)) by = GO(by)
dlogy gz | x3 = V ’\1 /‘ ’\ ’\
p—
g o A~ A A A~ A
dlogo gXna 0 N 1 0 7\" 1 7‘,‘ 7‘,‘ 7‘,‘
fo Quantum algorithm for dlogpvg is I (Mosca Zalka '03) prem===-
.Xn

[
.,

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003)

-
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Cracking the GGM tree
Output: key b € Z
dlog,, gx 2
7;71
b; = GY(b)
dlogp’gx2a Xo \
f71
: b2=C b2=G1(b1)
C“Og x3a =0 AN 3 1 SR
f_f’g Z) s / The distribution D, 4 4e) 5 can be exactly / ’\
P 4 PAC generator-learned from a single sample! A A
diogoems | 0/N\1 o/N1 N 7N 7N /"\ /"\
fol Quantum algorithm for dlog,, , is exact! (/oo Jolin ) peeeee )
.. Xn E

[
.,

Mosca, Zalka: Exact QFTs and dLogs. arXiv:quant-ph/0301093 (2003) Figure Ref: The internet.



|
A quantum vs. classical separation for distribution learning

Question: Quantum generator-learning advantage?
Is there a class of efficiently classically generated discrete distributions
which is
m not efficiently classsical PAC generator-learnable, but
m efficiently quantum PAC generator-learnable
w.r.t. the SAMPLE oracle and the KL divergence?

Theorem: Y ES !

Coyle et al., NPJ Quant. Inf. (2020).



Wrap up



Discussion

PROs

m Our result shows that discrete distributions admit structure that can
be exploited by quantum computers.

CONs

m The result is not a practical result and (a bit) artificial.

m a single sample always suffices for learning.
m the learning algorithm is always exact.
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hardness?
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