

Precisely identifying Hamiltonians from dynamical data

Dominik Hangleiter

QLCI RQS Workshop August 16, 2022

Licensed under CC BY-NC 4.0.

Ingo Roth (TII, Abu Dhabi)

Jens Eisert (FU Berlin)

Pedram Roushan (Google)

Quantum laws of nature

THE HAMILTONIAN

Image Ref.: Immanuel Bloch, CERN Colloquium 09/18

1. We can tune interactions and probe the quantum systems very well.

1. We can tune interactions and probe the quantum systems very well.

- 2. Hamiltonian identification is crucial for
- (a) Engineering and making quantum simulators more precise.
- (b) Certifying they are doing the right thing.

1. We can tune interactions and probe the quantum systems very well.

- 2. Hamiltonian identification is crucial for
- (a) Engineering and making quantum simulators more precise.
- (b) Certifying they are doing the right thing.

WE NEED IT AND WE CAN DO IT

Bose-Hubbard physics

$$H = -\sum_{\langle ij\rangle} J_{ij} \left(b_i^{\dagger} b_j + b_j^{\dagger} b_i \right) + \sum_i \mu_i b_i^{\dagger} b_i + U \sum_i b_i^{\dagger} b_i^{\dagger} b_i b_i$$

Cold atoms in optical lattices

Superconducting qubits

4/29

Bose-Hubbard physics

$$H = -\sum_{\langle i,j\rangle} J_{ij} \left(b_i^{\dagger} b_j + b_j^{\dagger} b_i \right) + \sum_i \mu_i b_i^{\dagger} b_i + U \sum_i b_i^{\dagger} b_i^{\dagger} b_i b_i$$

Bose-Hubbard physics

 $H = -\sum_{\langle ij\rangle} J_{ij} \left(b_i^{\dagger} b_j + b_j^{\dagger} b_i \right) + \sum_i \mu_i b_i^{\dagger} b_i + U \sum_i b_i^{\dagger} b_i^{\dagger} b_i b_i$

THEORY LAND

Theory

- [Qi and Ranard, 2019] : Local Hamiltonians can generically be identified from two-point correlations on a single eigenstate.
- [Anshu *et al.*, 2020] : Local Hamiltonians can be identified from polynomially many measurements on $\exp(-\beta H)$.
- [Li et al., PRL (2020)] : Generalized conservation of energy fixes the Hamiltonian.
- [Yu et al., 2201.00190] : Pauli-sparse Hamiltonians can be efficiently identified (SPAM-robustly).

Small-scale experiments using dynamical data

- NMR experiments for up to 3 qubits. Dominant error is decoherence. [e.g. Zhang and Sarovar, 2014; Hou *et al.*, 2017, Chen *et al* (2021)]
- Liouvillian tomography [Samach et al., 2105.02338]

Theory

- [Qi and Ranard, 2019] : Local Hamiltonians can generically b from two-point correlations on a single eigenstate.
- [Anshu *et al.*, 2020] : Local Hamiltonians can be identified frippolynomially many measurements on $exp(-\beta H)$.
- [Li et al., PRL (2020)] : Generalized conservation of energy f Hamiltonian.
- I'v et al. 2201.001001 · Pauli-sparse Hamiltonians can be of identifie "How do we identify our Hamiltonian?"

Small-scale experiments using dynamical data

- NMR experiments for up to 3 qubits. Dominant error is decoherence. [e.g. Zhang and Sarovar, 2014; Hou *et al.*, 2017, Chen *et al* (2021)]
- Liouvillian tomography [Samach et al., 2105.02338]

- incoherent + state-preparation and measurement (SPAM) errors, AND
- scalable to intermediate-scale devices, AND
- practically applicable

^{identifie} "How do we identify our Hamiltonian?"

Small-scale experiments using dynamical data

- NMR experiments for up to 3 qubits. Dominant error is decoherence. [e.g. Zhang and Sarovar, 2014; Hou *et al.*, 2017, Chen *et al* (2021)]
- Liouvillian tomography [Samach et al., 2105.02338]

The Hamiltonian identification problem

The Hamiltonian identification problem

- 1. What data O_m, ψ_n are needed and measurable?
- 2. How can we identify H from those data?

The Hamiltonian identification problem

- 1. What data O_m, ψ_n are needed and measurable?
- 2. How can we identify H from those data?

$$H = \sum_{i,j=1}^{N} h_{i,j} a_i^{\dagger} a_j, \qquad [a_i, a_j^{\dagger}] = \delta_{i,j}$$

$$H = \sum_{i,j=1}^{N} h_{i,j} a_i^{\dagger} a_j, \qquad [a_i, a_j^{\dagger}] = \delta_{i,j}$$
$$a_m(t) = \sum_{j=1}^{N} (e^{-ith})_{m,j} a_j$$
$$|\psi_n\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |0, \dots, 0, 1, 0, \dots, 0\rangle) = \frac{1}{\sqrt{2}} (|0\rangle + |1_n\rangle)$$

$$H = \sum_{i,j=1}^{N} h_{i,j} a_i^{\dagger} a_j, \qquad [a_i, a_j^{\dagger}] = \delta_{i,j}$$
$$a_m(t) = \sum_{j=1}^{N} (e^{-ith})_{m,j} a_j$$
$$|\psi_n\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |0, \dots, 0, 1, 0, \dots, 0\rangle) = \frac{1}{\sqrt{2}} (|0\rangle + |1_n\rangle)$$
$$\bigcap_{\substack{n \text{ th} \\ n \text{ th}}}^{\text{th}} \langle \psi_n | a_m(t) | \psi_n \rangle = \frac{1}{2} \sum_j (e^{-ith})_{m,j} \underbrace{\langle 0 | a_j | 1_n \rangle}_{\delta_{j,n}} = \frac{1}{2} (e^{-ith})_{m,n}$$

$$H = \sum_{i,j=1}^{N} h_{i,j} a_i^{\dagger} a_j, \qquad [a_i, a_j^{\dagger}] = \delta_{i,j}$$

$$a_m(t) = \sum_{j=1}^{N} (e^{-ith})_{m,j} a_j$$

$$|\psi_n\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |0, \dots, 0, 1, 0, \dots, 0\rangle) = \frac{1}{\sqrt{2}} (|0\rangle + |1_n\rangle)$$

$$\uparrow_n^{th}$$

$$\langle \psi_n | a_m(t) | \psi_n \rangle = \frac{1}{2} \sum_j (e^{-ith})_{m,j} \underbrace{\langle 0 | a_j | 1_n \rangle}_{\delta_{j,n}} = \frac{1}{2} (e^{-ith})_{m,n} \quad \in \mathbb{C}(N \times N) \longrightarrow LINEAR!$$

ightarrow Measure as $\langle x_m(t)
angle_{\psi_n}+i\langle {\cal P}_m(t)
angle_{\psi_n}=\langle a_m(t)
angle_{\psi_n}$

Time slices

$$e^{-ith} = \sum_{k=1}^{N} e^{-it\lambda_k} |\mathbf{v}_k\rangle \langle \mathbf{v}_k|$$

Frequency extraction la mobile communication: ESPRIT

- **1.** Take data at equally spaced times $t_l = l \cdot \Delta t$, l = 1, ..., L.
- **2.** Prepare data for processing: $S[I] = \text{Tr}[e^{-it_l h}] = \sum_{k=1}^{N} e^{-it_l \lambda_k} \longrightarrow \hat{S}[I] = \sum_{k=1}^{N} c_k e^{-i\delta t \lambda_k I} + \eta$

Frequency extraction la mobile communication: ESPRIT

- **1.** Take data at equally spaced times $t_I = I \cdot \Delta t$, $I = 1, \ldots, L$.
- **2.** Prepare data for processing: $S[I] = \text{Tr}[e^{-it_l h}] = \sum_{k=1}^{N} e^{-it_l \lambda_k} \longrightarrow \hat{S}[I] = \sum_{k=1}^{N} c_k e^{-i\delta t \lambda_k I} + \eta$

Algorithm ESPRIT(S, n, L)Input: $S \in \mathbb{C}^L$, $N \in \mathbb{N}$, $M \leq L$.1: Set $H = \text{Hankel}_M(S) \in \mathbb{C}(M \times L - M + 1)$.2: Calculate the SVD of $H = (U|U_{\perp})\Sigma(V|V_{\perp})^{\dagger}$.3: Calculate $\Psi = (U^{\uparrow})^+ U^{\downarrow}, \quad U^{\uparrow,\downarrow} \in \mathbb{C}(M - 1 \times L)$.4: Calculate $z = \text{eigs}(\Psi) \in \mathbb{C}^N$.Output: z

ESPRIT in action

ESPRIT in action

Theory (Li et al., 2019)

For sparse signal $N^2 \leq L$ and low noise $\|\eta\| \leq SRF^{-(4|\Lambda|-3)}/L$: $\Rightarrow \max_k |\lambda_k - \hat{\lambda}_k| \in O(SRF^{2|\Lambda|-2} \|\eta\|)$ $SRF = 1/(L \cdot \min_{i,j} |\lambda_i - \lambda_j|)$

Li et al., arXiv:1905.03782

ESPRIT in action

Li et al., arXiv:1905.03782

Identification algorithm

Identification algorithm

Eigenspace reconstruction

EXPERIMENT

Getting our hands dirty

Getting our hands dirty

Getting our hands dirty

Getting our hands dirty ... and putting the pink glasses back on

Getting our hands dirty ... and putting the pink glasses back on

$$\mathbf{y}(t) = \frac{1}{2} \mathbf{e}^{-ith} \cdot \mathbf{S} \longrightarrow \mathbf{y}^{(t_0)}(t) = \frac{1}{2} \mathbf{y}(t) \cdot \mathbf{y}(t_0)^{-1}$$

$$y(t) = \frac{1}{2}e^{-ith} \cdot S \longrightarrow y^{(t_0)}(t) = \frac{1}{2}y(t) \cdot y(t_0)^{-1}$$

$$y^{(l_0)}[l] = \frac{1}{2}y[l](y[l_0])^{-1}$$

$$= \frac{1}{2}e^{-it_lh}S\left(e^{-it_{l_0}h}S\right)^{-1} = \frac{1}{2}e^{-it_lh}SS^{-1}e^{it_{l_0}h}$$

$$= \frac{1}{2}e^{-i(t_l - t_{l_0})h}$$

$$y(t) = \frac{1}{2}e^{-ith} \cdot S \longrightarrow y^{(t_0)}(t) = \frac{1}{2}y(t) \cdot y(t_0)^{-1}$$

$$y^{(l_0)}[I] = \frac{1}{2}y[I](y[l_0])^{-1}$$

$$= \frac{1}{2}e^{-it_1h}S\left(e^{-it_{l_0}h}S\right)^{-1} = \frac{1}{2}e^{-it_1h}SS^{-1}e^{it_{l_0}h}$$

$$= \frac{1}{2}e^{-i(t_1-t_{l_0})h}$$

Average over different y[I₀], by concatenating every s data points

 $\textbf{y}_{total,s} = (\textbf{y}^{(0)}, \textbf{y}^{(s)}, \textbf{y}^{(2s)}, \ldots)$

$$y(t) = \frac{1}{2}e^{-ith} \cdot S \longrightarrow y^{(t_0)}(t) = \frac{1}{2}y(t) \cdot y(t_0)^{-1}$$

$$y^{(l_0)}[I] = \frac{1}{2}y[I](y[l_0])^{-1}$$

$$= \frac{1}{2}e^{-it_1h}S\left(e^{-it_{l_0}h}S\right)^{-1} = \frac{1}{2}e^{-it_1h}SS^{-1}e^{it_{l_0}h}$$

$$= \frac{1}{2}e^{-i(t_1-t_{l_0})h}$$

Average over different y[I₀], by concatenating every s data points

 $\textbf{y}_{total,s} = (\textbf{y}^{(0)}, \textbf{y}^{(s)}, \textbf{y}^{(2s)}, \ldots)$

Estimate initial map as $\hat{S} = \frac{2}{L} \sum_{l=1}^{L} e^{it_l \hat{h}} y[l]$ given estimate \hat{h} of h.

Removing initial vs. removing final map

$$\mathbf{y}^{(t_0)}(t) = rac{1}{2}\mathbf{M}\cdot\mathbf{e}^{-ith}\cdot\mathbf{S}$$
 \longrightarrow $\mathbf{y}^{(t_0)}(t) = \mathbf{M}\mathbf{e}^{-i(t-t_0)h}\mathbf{M}^{-1}$

- 1. Frequencies are unaltered!
- 2. The eigenbasis of h is constrained to orthogonal

$$\implies \hat{h} = O_M h O_M^T \text{ with } O_M = \arg\min_O \|O - M\|_2$$

3. For diagonal $M = \text{diag}(e^{i\delta_1}, \dots, e^{i\delta_N})$: $D_M = \text{diag}(\{+1, -1\}^N)$

We can identify the signs, assuming that Hamiltonian does not deviate by a sign flip in the projectors.

$$\longrightarrow \hat{\mathbf{S}} = \mathbf{D}_{\mathbf{M}} \hat{\mathbf{S}}', \quad \hat{\mathbf{h}} = \mathbf{D}_{\mathbf{M}} \hat{\mathbf{h}}' \hat{\mathbf{D}}_{\mathbf{M}}$$

Reconstructing a Hamiltonian

Reconstructing a Hamiltonian

(b)	Target h_0				Identified \hat{h}				$(h_0 - \hat{h}) \times 10$				(c) Initial map Ŝ						Final map \hat{D}_{M}							
18	-20	0	0	0	19	-19	0.2	0.2	-0.3	-14	-6.4	-2.3	-1.6	2.9	MHz	0.8	-0.2	-0.1	0	0	1	0	0	0	0	_1
-20	-11	-20	0	0	-19	-10	-20	-0.1	-0.3	-6.4	-2.7	0.2	1.4	3.4	10	-0.1	-0.6	-0.1	0	0	0	-1	0	0	0	
0	-20	1.3	-20	0	0.2	-20	0.1	-19	-0.3	-2.3	0.2	12	-14	3.3	10	0	-0.2	0.8	-0.1	0	0	0	1	0	0	
0	0	-20	8.5	-20	0.2	-0.1	-19	11	-20	-1.6	1.4	-14	-21	-1.3	-10	0	0	0.1	-0.4	0	0	0	0	-1	0	
0	0	0	-20	-16	-0.3	-0.3	-0.3	-20	-16	2.9	3.4	3.3	-1.3	1.4	20	0	0	0	-0.1	-0.9	0	0	0	0	-1	L1

Reconstructing a Hamiltonian

$$\mathcal{E}_{ ext{analog}}(\hat{h},h_{ ext{O}}) = rac{1}{N} \|\hat{h} - h_{ ext{O}}\|_2$$

Characterizing the analog performance of an entire chip #1

Characterizing the performance of an entire chip #2

Characterizing the performance of an entire chip #2

Characterizing the performance of an entire chip #2

Characterizing the analog performance of an entire chip #3

Median entrywise deviation [MHz]

Characterizing the analog performance of an entire chip #3

Median entrywise deviation [MHz]

So how did we solve the Hamiltonian identification problem?

Summary

- **1 Sparsity** of the frequency spectrum.
- 2 Orthogonality of the eigenbasis.
- **3** Sparsity of the Hamiltonian support.
- 4 SPERROR removal.

Summary

Two-body interactions

ongoing with Jonas Fuksa, Ingo Roth

$$H(h, V) = \sum_{ij} h_{i,j} a_i^{\dagger} a_j + \sum_{ij,kl} V_{ij,kl} a_i^{\dagger} a_j^{\dagger} a_k a_l.$$

Two-body interactions

ongoing with Jonas Fuksa, Ingo Roth

$$H(h, V) = \sum_{ij} h_{i,j} a_i^{\dagger} a_j + \sum_{ij,kl} V_{ij,kl} a_i^{\dagger} a_j^{\dagger} a_k a_l.$$

Identification

$$|\psi_{kl}\rangle = \begin{cases} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle_k \otimes |1_l\rangle), & k \neq l \\ \frac{1}{\sqrt{2}}(|0\rangle + |2\rangle_k), & k = l \end{cases}$$

$$\langle a_m a_n \rangle_{kl}(t) = \frac{1}{2} \exp \{-i(h \otimes 1 + 1 \otimes h + 2V)\}_{mn,kl}$$

$$\longrightarrow \text{ Need to measure correlators } \langle x_m x_n \rangle_{klr} \langle x_m p_n \rangle_{klr} \langle p_m x_n \rangle_{klr} \langle p_m p_n \rangle_{kl}.$$

 \rightarrow V symmetric and diagonalizable by $O \otimes O$.

Outlook #2: Specific systems

Solid-state simulators ongoing with Noah Berthusen, Ingo Roth, Michael Gullans

- Measure n_i
- Initial states $|1\rangle_k + |1\rangle_l$ and $|1\rangle_k + i|1\rangle_l$

Outlook #2: Specific systems

Solid-state simulators ongoing with Noah Berthusen, Ingo Roth, Michael Gullans

- Measure n_i
- Initial states $|1\rangle_k + |1\rangle_l$ and $|1\rangle_k + i|1\rangle_l$
 - \rightarrow $y_{i,kl} = U(t)_{ik}U(t)_{li}^{\dagger}$

Challenges

- Requires vector-ESPRIT for frequency extraction.
- Identification of n(n-1) pairs $\lambda_k \lambda_l \rightarrow \text{extract } \lambda_k$

• System size scaling

Frequency resolution scales as 1/T, but the number of detected frequencies scales as poly(N)

 \longrightarrow $T \in poly(N) \dots$

• Data type

Scalar version of ESPRIT does not work on photon-number data.

• System size scaling

Frequency resolution scales as 1/T, but the number of detected frequencies scales as poly(N)

 \longrightarrow $T \in poly(N) \dots$

• Data type

Scalar version of ESPRIT does not work on photon-number data.

Vectorizing ESPRIT

with Jonas Fuksa and Ingo Roth

• Recover frequencies jointly from the entries of

$$U(t) = \sum_{\lambda, i, j} e^{-i\lambda t} \underbrace{\langle i | \lambda
angle \langle \lambda | j
angle}_{a_{\lambda, i, j}} | i
angle \langle j |$$

Outlook #4: Theory questions

Outlook #4: Theory questions

Recovery guarantees for

- variants of ESPRIT
- conjugate-gradient method

Application to spin systems

hopping + single excitations

THANK YOU

Measurement errors

[YSHY22] <- [HYF21]

- + RB of the measurements
- short-time evolution

More

▶ ??????????

Comparison to other methods

→ Generalized energy conservation [LZH20]

Frequency extraction à la mobile communication: ESPRIT

Algorithm ESPRIT(**S**, *n*, *L*)

Input: $S \in \mathbb{C}^{L}$, $N \in \mathbb{N}$, $M \leq L$.

- 1: Set $H = \text{Hankel}_M(S)$.
- 2: Calculate the SVD of $H = (U|U_{\perp})\Sigma(V|V_{\perp})^{\dagger}$.
- 3: Calculate $\Psi = (U^{\uparrow})^+ U^{\downarrow}$.
- 4: Calculate $z = eigs(\Psi)$.

Output: z
Algorithm ESPRIT(S, n, L)Hankel_M(S) =S[0]S[1]S[L - M]Input: $S \in \mathbb{C}^L$, $N \in \mathbb{N}$, $M \leq L$.Hankel_M(S) =S[0]S[1]S[L - M]1: Set H = Hankel_M(S).S[M]S[M - 1]S[L]2: Calculate the SVD of H= $(U|U_{\perp})\Sigma(V|V_{\perp})^{\dagger}$.S[L]3: Calculate $\Psi = (U^{\uparrow})^+U^{\downarrow}$.S[L]S[L]4: Calculate $z = eigs(\Psi)$.Output: z

AlgorithmESPRIT(S, n, L)Input: $S \in \mathbb{C}^L$, $N \in \mathbb{N}$, $M \leq L$.1:Set $H = \text{Hankel}_M(S)$. 2: Calculate the SVD of H = $(\boldsymbol{U}|\boldsymbol{U}_{\perp})\Sigma(\boldsymbol{V}|\boldsymbol{V}_{\perp})^{\dagger}$. – $\rightarrow H = \Phi_M \operatorname{diag}(\mathbf{c}) \Phi_{L-M}^T = U \Sigma V^{\dagger}, U = \Phi_M P$ 3: Calculate $\Psi = (U^{\uparrow})^+ U^{\downarrow}$. 4: Calculate $z = eigs(\Psi)$. $\Phi_{M} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ z_{1} & z_{2} & \cdots & z_{N} \\ \vdots & \vdots & & \vdots \\ z_{1}^{M} & z_{2}^{M} & \cdots & z_{N}^{M} \end{pmatrix}, z_{k} = e^{-i\lambda_{k}\Delta t}$ Output: z

Algorithm ESPRIT(S, n, L)Input: $S \in \mathbb{C}^L$, $N \in \mathbb{N}$, $M \leq L$.1' Set $H = \text{Hankel}_M(S)$. 2: Calculate the SVD of H = $(\boldsymbol{U}|\boldsymbol{U}_{\perp})\Sigma(\boldsymbol{V}|\boldsymbol{V}_{\perp})^{\dagger}$. – $\rightarrow H = \Phi_M \operatorname{diag}(\mathbf{c}) \Phi_{I-M}^T = U \Sigma V^{\dagger}, U = \Phi_M P$ 3: Calculate $\Psi = (U^{\uparrow})^+ U^{\downarrow}$. – 4: Calculate $z = eigs(\Psi)$. $\Phi_{M} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ z_{1} & z_{2} & \cdots & z_{N} \\ \vdots & \vdots & & \vdots \\ z_{M}^{M} & z_{M}^{M} & \cdots & z_{N}^{M} \end{pmatrix}, z_{k} = e^{-i\lambda_{k}\Delta t}$ Output: z $\Phi_{\pmb{M}}^{\scriptscriptstyle +} = \Phi_{\pmb{M}}^{\uparrow} \operatorname{diag}({f z})$ $\Psi = (\boldsymbol{U}^{\uparrow})^{\dagger} \boldsymbol{U}^{\downarrow} = \boldsymbol{P}^{-1} \operatorname{diag}(\mathbf{z}) \boldsymbol{P}^{\downarrow}$

Task:

Given $\lambda_1, \ldots, \lambda_N$, reconstruct $|v_1\rangle, \ldots, |v_N\rangle$

Task:

Given $\lambda_1, \dots, \lambda_N$, reconstruct $|\mathbf{v}_1\rangle, \dots, |\mathbf{v}_N\rangle$

$$\min_{\{|\mathbf{v}_k\rangle\}} \sum_{l=1}^{L} \left\| \mathbf{y}[l] - \sum_{k=1}^{N} e^{-i\lambda_k t_l} |\mathbf{v}_k\rangle \langle \mathbf{v}_k| \right\|_2^2$$

subject to

1.
$$\langle \mathbf{v}_{m} | \mathbf{v}_{n} \rangle = \delta_{m,n}$$

2. $\left(\sum_{k} \lambda_{k} | \mathbf{v}_{k} \rangle \langle \mathbf{v}_{k} | \right)_{\overline{\Omega}} = \mathbf{0}$
3. · · ·

Task:

Given $\lambda_1, \dots, \lambda_N$, reconstruct $|\mathbf{v}_1\rangle, \dots, |\mathbf{v}_N\rangle$

$$\min_{\{|\mathbf{v}_k\rangle\}} \sum_{l=1}^{L} \left\| \mathbf{y}[l] - \sum_{k=1}^{N} e^{-i\lambda_k t_l} |\mathbf{v}_k\rangle \langle \mathbf{v}_k| \right\|_2^2$$

subject to

1.
$$\langle \mathbf{v}_{m} | \mathbf{v}_{n} \rangle = \delta_{m,n}$$

2. $\left(\sum_{k} \lambda_{k} | \mathbf{v}_{k} \rangle \langle \mathbf{v}_{k} | \right)_{\overline{\Omega}} = \mathbf{0}$
3. · · ·

Solution:

Algorithm Conjugate gradient descent

Input: Objective function $f: O(N) \rightarrow \mathbb{R}$

- 1: Calculate Euclidean gradient $E_k = \nabla f(Q_k)$
- 2: Calculate Riemannian gradient $R_k(E_k, Q_k)$.
- 3: Parallel transport R_{k-1} to Q_k and calculate conjugate search direction $H_k(R_k, \hat{R}_{k-1})$.

4: Perform line search with H_k to obtain t_k .

5: Set
$$Q_{k+1} = \exp(H_k t_k)Q_k$$
.

Output: Q_{final}