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Quantum advantage demonstrations

Is there a  

Scalable 

Verifiable 

NISQ 

Quantum advantage? 

Aaronson, Simons Workshop 2022



Bell sampling highlights
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Efficient fidelity estimation in the same 
regime in which XEB works

Structured distribution with efficient & 
inefficient property tests

Hardness of sampling

More noise robust than standard-basis 
sampling (?)

Quantum advantage test that is more 
difficult to spoof than just XEB (?)



Plan for the Talk

1. Recap of quantum random sampling 

2. Bell sampling  

3. Noisy Bell sampling 

4. Bell sampling in experiments 

5. Scalability  

6. Outlook & open questions
Do you have questions? 



Quantum random sampling
———> a brief recap of the noiseless case



Quantum random sampling
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C

C ∈ {C0, …, Cm}

S ← PC(S) = |⟨S |C |0⟩ |2
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TASK 

1. Choose a random circuit . 

2. Sample from the output distribution . 

C
pC



For example: The Google circuits
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Evidence for hardness

Assuming some complexity-theoretic conjectures, there is no efficient classical 
algorithm  that approximately samples from  in total-variation distance.𝒜 pC

Aaronson & Arkhipov, 2013; Bremner, Jozsa, Shepherd, 2010; 
Bremner, Montanaro, Shepherd, 2016

Conjecture (XHOG): Producing  outcomes  with average probability 

 is classically intractable. 

n x1, …, xn
𝔼i[PC(xi)] ≥ b/2n

Aaronson & Chen, 2017; Aaronson & Gunn, 2020



The outcome distribution



Verification & benchmarking of QRS

The largest probability of  is very small, i.e., .  

—> Verifying total-variation distance requires   samples. 

PC O(1/ 2n)

Ω(2n/4)

Valiant & Valiant, 2015; D.H. et al., 2018  forms a 2-designU

Can be estimated from a polynomial number of samples. 

Distinguishes from the uniform distribution.

Statistical 
properties

Hard to achieve a high score classically(?)Complexity 
properties



Bell sampling



r ← PC(r) = |⟨σr |C ⊗ C |0⟩ |2

Bell sampling

C ← {C0, …, Cm}

TASK 

1. Choose a random circuit . 

2. Sample from the output distribution . 

C

PC
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|σr⟩ = (σr ⊗ 𝕀)( |00⟩ + |11⟩)/ 2
σ00 = 1, σ01 = Z, σ10 = X, σ11 = Y

r ∈ {0,1}2n



Bell sampling is realistic

Evered et al., 2023

Rydberg atoms in tweezers

Postler et al., 2023

Ion traps

Bell measurement just requires one circuit layer!



Bell sampling is hard: the Stockmeyer argument

PC(r) =
1
2n

|⟨0 |C σr C |0⟩ |2

Approximate average-case hardness of 
computing probabilities

i. Worst-case approximate hardness 

ii. Average-case (near) exact hardness 

iii. Anticoncentration BMS16, BHH16, HBVSE18, HM23, …

AA13; BFNV19

Hiding PC(r) = PCs
(r ⊕ s) Cs = C ⋅ σ1/2

s

Universal quantum circuits

Continuous gate set

Last layer invariant under σ1/2
s

Unitary 4-designs Harrow, Mehraban, 2023
depth n1/D



The Bell sampling distribution has structure!

PC(r) = |⟨σr |C ⊗ C |0⟩ |2

Supported on symmetric subspace 

Outcomes are correlated 

Large stabilizer dimension

Anticoncentrated on the  
symmetric subspace



Support & the SWAP test

𝕊2 = |σ00⟩⟨σ00 | + |σ10⟩⟨σ10 | + |σ01⟩⟨σ01 | − |σ11⟩⟨σ11 |

The distribution is supported on the symmetric subspace ( )πY(r) = 0

For ρ = |C⟩⟨C | : |{r : r ← PC ∧ πY(r) = 1} | = 0

Tr[ρ2] = Tr[(ρ ⊗ ρ)𝕊] = ∑
r

(−1)πY(r) |⟨σr |C ⊗ C |0⟩ |2

πY(r) = parity of 11 outcomes

𝕊 = 𝕊⊗n
2

Can be efficiently checked: SWAP test

Tr[ρ2] ≈
1
M

( |{r : πY(r) = 0} | − |{r : πY(r) = 1} | )



A

Correlations & the subsystem SWAP test

Subsystem purities reflect the entanglement properties.

PA = Tr[ρ2
A] ≈

1
M ( |{r : πY(rA) = 0} | − |{r : πY(rA) = 1} |)

Average entanglement properties can be computed. Page curves
Page, 1992

� logPA

|A|

|@A|d5
|@A|d4
|@A|d3
|@A|d2
|@A|d1

n/2

depth

What does the Page curve look like for interesting 
circuit ensembles? 

Subsystem SWAP  
test



Magic test:  can be estimated from  Bell samples. dim(ℒ) O(n log n/ϵ)

Stabilizer dimension & magic test

For a stabilizer state , the distribution is supported (essentially) on the 

stabilizer of .

|S⟩
|S⟩

If C contains few ( ) T gates, then t |C⟩⟨C | = ∑
σl∈ℒ

λl σl Π𝒞 σk

Stabilizer dimension dim(ℒ) ≤ 2t

In fact, a Clifford + T circuit with  T-gates can be learned from  Bell samples and 

 additional measurements. 

t O(n log n/ϵ)
O(2t /ϵ2)

See also Grewal, Iyer, Kretschmer, Liang 2023; Leone, Oliveira, Hamma, 2023 

Montanaro, 2017; Gross, Nezami, Walter, 2022

PC(r) = |⟨σr |C ⊗ C |0⟩ |2 =
1
2n

|⟨C |σr |C⟩ |2



The Bell sampling distribution has structure!

PC(r) =
1
2n

|⟨C |σr |C⟩ |2

Supported on symmetric subspace 

Outcomes are correlated 

Large stabilizer dimension

Distribution property 

Global SWAP test

Subsystem SWAP test

Magic test

Test

efficient

Heavy outcomes XEB test Inefficient 



Output distributions of circuits with 
no ( ) non-Clifford gates< dim(ℒ)

Magic test

Structure gives state distinguishers

PC(r) =
1
2n

|⟨C |σr |C⟩ |2

Globally uniform Global SWAP test

Uniform on symmetric subspace Subsystem SWAP test

Distinguishes against Test

efficient

Wrong heavy outcomes XEB test Inefficient 



Noisy Bell sampling



Quantum random sampling
———> a brief recap of the noisy case



Noisy quantum random sampling

Noisy quantum device Classical algorithm

vs.

Exponentially decaying fidelity Exponential computing cost 

!!! Abhinav’s talk !!!

XEB
Efficient classical algorithms can achieve 

score  on XEB.2−O(d) Gao et al., 2021

Noisy quantum device XEB score scales as 

. 2−Θ(ϵ⋅n⋅d) = 2−Θ(d)

XEB score relates to fidelity.
Gao et al, 2021; Morvan et al, 2023; 

Ware et al. 2023

ϵ ∈ O(1/n)



How well can a noisy quantum device/
an efficient classical algorithm do on 

the Bell sampling tests? 
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Noisy Bell sampling

Consider the SWAP tests.

e.g.  (purity) A = [n]
P[n](ρC) = 1 − O(η)

XEB has similar properties.

Make noise assumptions. 

White-noise approximation on  C

ρC(η) = (1 − η) |C⟩⟨C | + η
𝕀

2n

Ideal measurement

Boixo et al., 2018; Dalzell et al., 2021

Which exactly?  
How does it decay in different noise regimes?

ϵ ϵ ϵ

ϵ < 1/n



Error detection

Every shot can detect errors

. 

The fraction of subsystems  of size  
with  is too large. 

The fraction of subsystems  of size  
with  is too large. 

…. 

πY(r) = 1

A n − 1
πY(rA) = 1

A n − 2
πY(rA) = 1

Declare an error

White-noise approximation on  C

ρC(η) = (1 − η) |C⟩⟨C | + η
𝕀

2n

Ideal measurement

∼
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Classical algorithms

Gao et al. (2021) spoofer for the XEB still works (?)

Can be detected by the SWAP test!

Classical algorithms can also do error detection. 

How does error detection fare if the distribution does not “contain” 
the ideal signal? 

Subsystem SWAP test: Clifford circuits generate high entanglement 

max
A⊂[n]

PA(ρC)e.g. max
A⊂[n]

−log [PA/PA(ρC)]or

Magic test: uniform samples gives high score! 



Proposed quantum advantage test

High score on XEB:  2n 1
M ∑

r←Q

PC(r) − 1

Do the new tests “add” to XEB? 

Good score on SWAP test, e.g.: max
A⊂[n]

−log [PA/PA(ρC)]

High score on magic test: dim(ℒ) efficient

efficient  
for very large/small A

inefficient

Proposition 

Simultaneously achieving a “good score” on all tests is classically intractable. 



Bell sampling in experiments



Measuring fidelity in experiments

XEB is an inefficient estimator of fidelity in the white-noise regime 
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Hϵ ϵ ϵ

Purity is an efficient estimator of fidelity in 
the white-noise regime.

Tr[ρC(η)2] = (1 − η)2 + O(1/2n)

⟨C |ρC(η) |C⟩ = 1 − η + O(1/2n)

!!! Abhinav’s talk !!!

White-noise approximation on  C

ρC(η) = (1 − η) |C⟩⟨C | + η
𝕀

2n

Ideal measurement

Dalzell et al., 2021

ϵ < 1/n



Scalability
———> the constant-noise regime



All Paulis contribute to the distribution!

Efficient classical algorithm can achieve 
 TVD to noisy quantum distribution 

with constant & depolarizing & local noise.
1/poly(n)

Bremner, Montanaro, Shepherd, 2017 
Gao & Duan, 2018; Aharonov et al., 2022

Truncated Pauli path distribution seems to be 
exponentially far from the noisy distribution

Noisy circuit

Ideal measurement
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On robustness to noisy simulation algorithms
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Is the quantum advantage in Bell sampling 
more noise-robust? 



Summary & outlook



Quantum advantage demonstrations

Is there a  

Scalable 

Verifiable 

NISQ 

Quantum advantage? 

Aaronson, Simons Workshop 2022



Bell sampling highlights
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Efficient fidelity estimation in the same 
regime in which XEB works

Structured distribution with efficient & 
inefficient property tests

Hardness of sampling

More noise robust than standard-basis 
sampling (?)

Quantum advantage test that is more 
difficult to spoof than just XEB (?)



Outlook & questions

Noise-robustness of Bell sampling?

Is Bell sampling a universal model of quantum computation? 

How make the best possible use of the samples in the tests?

More error mitigation with more copies? 

Hardness of achieving high test scores?


