

HIDING SECRETS IN IQP CIRCUITS

A drama in three acts

Dominik Hangleiter

with David Gross

Arlington, June 11, 2024

Verifying quantum advantage

Verifying quantum advantage

Quantum random sampling

$$\boxed{\textbf{C}} \in \{\textbf{C}_0, \dots, \textbf{C}_{\textbf{N}}\}$$

Quantum random sampling

Quantum random sampling

Classical simulations are provably inefficient.

Review: DH, Eisert, RMP (2023)

3 / 22

Can we efficiently verify quantum sampling?

Dan and Mick have an idea

ACTI

X program [SB09]

- ightharpoonup Angle θ

$$X$$
 program [SB09]

→ Angle θ

→ $P \in \{0,1\}^{m \times n}$

→ $H_P = \sum_i \left(\prod_j X_j^{P_{i,j}}\right)$

$$X$$
 program [SB09]

→ Angle θ

→ $P \in \{0,1\}^{m \times n}$

→ $H_P = \sum_i \left(\prod_j X_j^{P_{i,j}}\right)$

Example

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \qquad H_{\mathbf{P}} = X_2 X_3 + X_1 X_2 X_3 + X_1 X_2 X_3 X_4 + X_2 + X_1 X_3 X_4$$

Design an X program (\mathbf{P}, θ) with a secret s.

Compute $\frac{1}{k} \sum_{k} x_k \cdot s \approx \Pr[x \cdot s = 0]$.

Dan and Mick's tricks

The double angle trick [SB09,She10]

Fourier coefficients are given by the zero-amplitude of a different X-program with double angle

$$eta_s = \langle Z_s \rangle = \langle 0 | e^{i2\theta H_{P_s}} | 0 \rangle$$
, where $(P_s)_i = P_i$ iff $P_i \cdot s = 1$.

Dan and Mick's tricks

The double angle trick [SB09,She10]

Fourier coefficients are given by the zero-amplitude of a different X-program with double angle

$$\beta_s = \langle Z_s \rangle = \langle 0 | e^{i2\theta H_{P_s}} | 0 \rangle$$
, where $(P_s)_i = P_i$ iff $P_i \cdot s = 1$.

- For $\theta = \pi/4$, an X-program is a Clifford circuit.
- ightharpoonup Can compute Fourier coefficients for hard circuits with $heta=\pi/8$.
 - Sampling from random X programs with $\theta=\pi/8$ is classically hard.

Dan and Mick's tricks

The double angle trick [SB09,She10]

Fourier coefficients are given by the zero-amplitude of a different Xprogram with double angle

$$\beta_s = \langle Z_s \rangle = \langle 0 | e^{i2\theta H_{P_s}} | 0 \rangle$$
, where $(P_s)_i = P_i$ iff $P_i \cdot s = 1$.

- ightharpoonup For $heta=\pi/4$, an X-program is a Clifford circuit.
- \longrightarrow Can compute Fourier coefficients for hard circuits with $heta=\pi/8$.
- ightharpoonup Sampling from random X programs with $heta=\pi/8$ is classically hard.

The coding theory trick [SB09,She10]

$$\langle 0|e^{i\pi/4H_{\textbf{P}}}|0\rangle = \begin{cases} 2^{-rank(\textbf{P}^T\textbf{P})/2} & col(\textbf{P})\cap col(\textbf{P})^{\perp} \text{ is doubly even} \\ 0 & else \end{cases}$$

4.0

Dan and Mick's tricks

The double angle trick [SB09,She10]

Fourier coefficients are given by the zero-amplitude of a different X-program with double angle

$$\beta = \langle 7 \rangle = \langle 0 | e^{i2\theta H_{Ps}} | 0 \rangle$$

where $(P_s)_i = P_i$ iff $P_i \cdot s = 1$.

For random P, $\operatorname{rank}(\mathbf{P}^T\mathbf{P}) \sim n$

 \rightarrow For most s, $\beta_s \lesssim 2^{-n}$

lifford circuit.

for hard circuits with $heta=\pi/8$.

o Sampling from random x programs with $heta=\pi/8$ is classically hard.

The coding theory trick [\$809,She10]

$$\langle 0|e^{i\pi/4H_{\textbf{P}}}|0\rangle = \begin{cases} 2^{-\mathsf{rank}(\textbf{P}^{T}\textbf{P})/2} & \mathsf{col}(\textbf{P})\cap\mathsf{col}(\textbf{P})^{\perp} \text{ is doubly even} \\ 0 & \mathsf{else} \end{cases}$$

Fourier coefficients are given by the zero-al program with double angle

$$\beta = (7) - (0)e^{i2\theta H_{Ps}} = 0$$

For random P, rank(P^TP) $\sim n$

 \rightarrow For most s, $\beta_s \lesssim 2^{-n}$

Goal

Design P such that $P_s^T P_s$ has large kernel for a secret s.

lifford circuit. for hard circuits with $\theta = \pi/8$.

 χ programs with $\theta = \pi/8$ is classically hard.

The coding theory trick [\$809,She10]

$$\langle 0|e^{i\pi/4H_{\textbf{P}}}|0\rangle = \begin{cases} 2^{-\mathsf{rank}(\textbf{P}^{T}\textbf{P})/2} & \mathsf{col}(\textbf{P})\cap\mathsf{col}(\textbf{P})^{\perp} \text{ is doubly even} \\ 0 & \mathsf{else} \end{cases}$$

Interlude: Geometry of the problem

Understand rank($\mathbf{P}_{\mathbf{s}}^{\mathsf{T}}\mathbf{P}_{\mathbf{s}}$)

Interlude: Geometry of the problem

Understand rank($\mathbf{P}_{s}^{T}\mathbf{P}_{s}$)

 \rightarrow $P_s^T P_s$ is the Gram matrix describing the geometry of $col(P_s)$

Interlude: Geometry of the problem

Understand rank($\mathbf{P}_{s}^{T}\mathbf{P}_{s}$)

 \rightarrow $P_s^T P_s$ is the Gram matrix describing the geometry of $col(P_s)$

 \rightarrow **d** \in ker $\mathbf{P}_{\mathbf{s}}^{\mathsf{T}}\mathbf{P}_{\mathbf{s}}$ \Leftrightarrow **d** \in rad col($\mathbf{P}_{\mathbf{s}}$),

Radical of vector space V: $rad(V) = V \cap V^{\perp}$

$$\mathbf{P} = egin{bmatrix} 1 & \mathbf{D} \\ \mathbf{O} & \mathbf{B} \end{bmatrix} \cdot \mathbf{X}$$
 $\mathbf{s} = egin{bmatrix} 1, |0,0,\dots | \end{bmatrix}$

→ [BS09] choose **D** as a quadratic residue code (radical is doubly even).

$$\mathbf{P} = egin{bmatrix} \mathbf{1} & \mathbf{D} \\ \mathbf{0} & \mathbf{B} \end{bmatrix} \cdot \mathbf{X}$$
 $\mathbf{s} = egin{bmatrix} 1, |0,0,\dots | \end{bmatrix}$

→ [BS09] choose D as a quadratic residue code (radical is doubly even).

—— The output distribution of $(P, \pi/8)$ has $\beta_s = 1/\sqrt{2}$

$$\mathbf{P} = \Pi \cdot egin{bmatrix} \mathbf{1} & \mathbf{D} & & & \\ \mathbf{0} & \mathbf{B} & & & \\ \mathbf{s} = egin{bmatrix} \mathbf{1}, & \mathbf{0}, \mathbf{0}, \dots & & \end{bmatrix} \cdot \mathbf{X} \end{bmatrix}$$

$$\mathbf{P} = \Pi \cdot egin{bmatrix} 1 & D & \\ \mathbf{O} & \mathbf{B} & \\ \mathbf{s} = egin{bmatrix} 1, & 0, 0, \dots \end{bmatrix} \cdot \mathbf{X} \end{bmatrix}$$

Design an X program (\mathbf{P}, θ) with a secret s.

Compute $\frac{1}{k} \sum_{k} x_k \cdot s \approx \Pr[x \cdot s = 0]$.

ACTII

Greg is a killjoy but IQP comes back

Greg's trick [Kah19]

For $d \in \mathbb{F}_2^n : \mathbf{P}_s d \in rad(col(\mathbf{P}_s)) \implies s \in ker(\mathbf{P}_d^T \mathbf{P}_d)$.

Greg's trick [Kah19]

For $d \in \mathbb{F}_2^n : \mathbf{P}_s d \in rad(col(\mathbf{P}_s)) \implies s \in \ker(\mathbf{P}_d^T \mathbf{P}_d)$.

Attack

- 1 Draw *d* randomly.
- **2** Iterate through the elements $t \in \ker \mathbf{G}_d$ and check if \mathbf{P}_t generates a QRC.

Greg's trick [Kah19]

For $d \in \mathbb{F}_2^n : \mathbf{P}_s d \in rad(col(\mathbf{P}_s)) \implies s \in \ker(\mathbf{P}_d^T \mathbf{P}_d)$.

Attack

1 Draw d randomly.

2 Iterate through the elements $t \in \ker \mathbf{G}_d$ and check if \mathbf{P}_t generates a QRC.

With probability $2^{-\operatorname{rank}(\mathbf{P}_{\mathbf{s}}^T\mathbf{P}_{\mathbf{s}})}$ s lies in $\ker \mathbf{P}_{\mathbf{d}}^T\mathbf{P}_{\mathbf{d}}$.

For the [SB09] QRC construction $\ker \mathbf{P}_{\mathbf{d}}^{T} \mathbf{P}_{\mathbf{d}}$ is typically small $(2^{n-m/2} \text{ elements})$.

- The SECRET is BilbHz jYxrOHYH401E.JFB0XZDD84254XH8f1rRg0 | B=

^{-m/2} elements).

Hope for IQP is waning

ACTIII

The radical attack

- column operations.
- \rightarrow If range[**B**|**C**] = $\mathbb{F}_2^{m_2}$, can 'clear' columns below [F|D].
- radical of H!
- Range is unchanged under amn operations. If range[$\mathbf{B}|\mathbf{C}$] = $\mathbb{F}_2^{m_2}$, can ar' columns below [$\mathbf{F}|\mathbf{D}$]. Elements of \mathbf{D}' are in the cal of \mathbf{H} ! The support of $\operatorname{col}(\mathbf{D}')$ deteres the secret. mines the secret.

The radical attack

- → Range is unchanged under column operations.
- \rightarrow If range[B|C] = $\mathbb{F}_2^{m_2}$, can 'clear' columns below [F|D].
- → Elements of **D**′ are in the radical of **H**!
- → The support of col(**D**') deter-

Valleys of opportunity!

→ The Lazy Meyer Attack: Only search small kernels

→ The Lazy Meyer Attack: Only search small kernels

- The Lazy Meyer Attack: Only search small kernels
- The **Double Meyer Attack**: Take kernel intersections to make the search

space smaller

- The Lazy Meyer Attack: Only search small kernels
- The **Double Meyer Attack**: Take kernel intersections to make the search

- The Lazy Meyer Attack: Only search small kernels
- The **Double Meyer Attack**: Take kernel intersections to make the search space smaller

Hamming's razor: identify redundant rows by exploiting that there are no low-weight Hamming strings in the image of the secret space.

Hiding secrets

- → Can large Fourier coefficients of IQP be efficiently estimated?
- → Nonlinear tests?
- Can we apply similar ideas to universal circuits?
- → Can we hide peaks in the **output distribution** of a circuit?

[Aaronson-Zhang-24]

Hiding secrets

- → Can large Fourier coefficients of IQP be efficiently estimated?
- → Nonlinear tests?
- Can we apply similar ideas to universal circuits?
- → Can we hide peaks in the **output distribution** of a circuit?

[Aaronson-Zhang-24]

Hiding secrets

- → Can large Fourier coefficients of IQP be efficiently estimated?
- → Nonlinear tests?
- Can we apply similar ideas to universal circuits?
- → Can we hide peaks in the **output distribution** of a circuit?

[Aaronson-Zhang-24]

Hiding secrets

- → Can large Fourier coefficients of IQP be efficiently estimated?
- → Nonlinear tests?
- → Can we apply similar ideas to universal circuits?
- → Can we hide peaks in the **output distribution** of a circuit?

[Aaronson-Zhang-24]

Using interaction

- → Are there less structured interactive schemes?
- → E.g. mid-circuit measurements in a random circuit with a little bit of structure?